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Abstract

Gaussian mixture models (GMM) can be viewed as a linear combination of different Gaussian models where each
component is a basis function or a “hidden” unit, aiming at offering a comparatively richer model than the single
Gaussian. It is among the most statistically generative model for unsupervised learning. In this paper, We take
into account the smoothness of the conditional probability distribution along the geodesics of data manifold. I.e., if
two observations are “close” in intrinsic geometry, there distribution to different Gaussian components are similar.
Therefore, we construct a neighboring graph and adopt Kullback–Leibler divergence as the “distance” measurement
to regularize the objective function of GMM. Consequently, new estimating formulae for parameters are obtained. We
call this new method Locally Consistent Gaussian Mixture Model (LCGMM). Experiments on several real data sets
demonstrate the effectiveness of such regularization.
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1. Background

Gaussian mixture model can be viewed as a linear su-
perposition of different Gaussian components in which
each is a basis function or a “hidden” unit, aiming at
offering a comparatively richer model than the single
Gaussian [1]:

P (x; Θ) =
K∑

k=1

πkp(x; θk)

where we assume K clusters altogether and each com-
ponent prior (πk) can be viewed as positive weights
in an output layer and satisfying

∑K
k=1 πk = 1.

Here all parameters are represented by Θ where Θ =
(π1, . . . , πK , θ1, . . . , θK). Note that each θk describes
a Gaussian density function pk, meaning that p(x; θk) ∼
N (x;µk,Σk).

The optimal parameter Θ is estimated by Maximum
Likelihood (ML) principle. Given N observations X =
(x1, x2, . . . , xN ), ML tries to find Θ such that P (X ; Θ)
is a maximum. For the sake of efficient optimization,
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it is typical to introduce the log likelihood function de-
fined as follows:

L(Θ) = logP (X ; Θ) = log
∏
i

P (xi; Θ)

Since the above log likelihood function contains the
log of the sum, it is difficult to find the optimal solution.
According to the Jensen’s Inequality, we know that:

L(Θ) =
∑
i

logP (xi; Θ)

=
∑
i

log
∑
z

P (xi, z; Θ)

=
∑
i

log

(∑
z

Qi(z)
P (xi, z; Θ)

Qi(z)

)

≥
∑
i

∑
z

Qi(z) log
P (xi, z; Θ)

Qi(z)

For each i, let Qi be some discrete distribution over the
latent variable z 1, satisfying that

∑
z Qi(z) = 1 and

Qi(z) ≥ 0.

1If z were continuous, the summations over z in the above equa-
tion should be replaced with integrals over z.
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The equality holds when Qi(z) = P (z|xi; Θ), which
here represents the possibility of observation x belong-
ing to the component z. Therefore, after removing the
term irrelevant to Θ, the complete log likelihood func-
tion can be written as [1]:

N∑
i=1

K∑
k=1

P (zk|xi; Θ)
(
log πk + log p(xi; θk)

)
(1)

With this complete log likelihood, we are able
to obtain estimates for Θ under the assumption that
P (z|x; Θ) is fixed. This procedure is known as
Expectation-Maximization algorithm [2] , which is a
powerful method for finding maximum likelihood so-
lutions for models with latent variables. It is a pro-
cess of iteration which alternates between an expecta-
tion (E) step computing an expectation of the latent vari-
able (z|x; Θ(t) in the GMM case), and a maximization
(M) step computing the new parameters (Θ(t+1)) which
maximize the complete log likelihood. Parameters com-
puted either in E or M step are alternatively fixed during
the other step as known quantities. Therefore, the EM
algorithm can be viewed as coordinate ascent on Q and
Θ.

In fact, there is a close similarity between K-means
and EM algorithm for Gaussian mixtures [1]. The K-
means algorithm does the clustering in a hard way, in
which each sample is associated directly with only one
cluster, while the EM algorithm makes a comparatively
soft assignment relied on the posterior probabilities. It
is noticeable that we can derive the K-means algorithm
as a nonprobabilistic limit of EM for GMM. For more
information, please see [1].

2. GMM with Local Consistent Regularizer

Gaussian Mixture Model is among the most statisti-
cally mature methods for clustering. However, in some
cases, owing to ignoring the smoothness of the variation
in the probability distribution of samples, GMM might
not obtain a comparatively ideal result. In this section,
we introduce a novel method LCGMM to extract such
kind of intrinsic geometry.

2.1. Model with Graph Regularization
Recall that clustering is the assignment of a set of

observations into subsets (called clusters) so that obser-
vations in the same cluster are similar in some sense.
And in GMM, we tag elements for clusters according to
the maximum possibility in different Gaussian models.
Unfortunately, such rule will lead to relatively isolated
observation compared with its neighbors.

Therefore, we make a specific assumption about
the intrinsic connection between the distribution of
observations PX and the conditional distribution
P (z|x; Θ(t)), where z represents the components. That
is, within some neighboring observations, their distribu-
tions P (z|x; Θ(t)) are “similar” to a certain degree. I.e.,
the variation of P (z|x; Θ(t)) is smooth in the geometry
of PX .

2.1.1. Distance Measurement
After discussing about the idea of improving GMM,

we will introduce the detailed model subsequently. The
first question is how to measure the “distance”.

Here we adopt Kullback–Leibler divergence (KL–
divergence) as our “distance” function. Given any two
distributions Pi(z) and Pj(z), the KL–divergence be-
tween them is defined as below:

D
(
Pi(z)∥Pj(z)

)
=
∑
z

Pi(z) log
Pi(z)

Pj(z)

Since the equation is not symmetric and also for sim-
plicity for the following computations, we modify it a
little to represent our distance between conditional dis-
tributions of observations like this:

Dij =
1

2

(
D
(
Pi(z)∥Pj(z)

)
+D

(
Pj(z)∥Pi(z)

))
2.1.2. Structure Description

Now we must consider a model to describe the local
geometry structure when data are given. Recent stud-
ies on spectral graph theory [3] and manifold learning
theory [4] have demonstrated that the local geometric
structure can be effectively modeled through a nearest
neighbor graph on a scatter of data points. Consider a
graph with N vertices where each vertex corresponds
to a data point. Define the edge weight matrix W as
follows:

Wij =

{
1 if xi ∈ Np(xj) or xj ∈ Np(xi).
0 otherwise.

where Np(xi) denotes the data sets of p nearing neigh-
bors of xi. Note that here we make use of Euclidean
distance to measure “near”.

2.1.3. Model Reconstruction
Once we let Pi(z) = P (z|xi; Θ) = Qi(z) accommo-

dating with the nearest neighbor graph, we are able to
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obtain the following term to describe the local smooth-
ness of P (z|xi; Θ):

R =
∑
i,j

DijWij

=
1

2

∑
i,j

(
D
(
Qi(z)∥Qj(z)

)
+D

(
Qj(z)∥Qi(z)

))
Wij

When xi and xj are close to each other, R should be
rather small. Therefore, we can reconstruct our GMM
by minimizing R, which will sufficiently help smooth
the geometric structure.

We now remodel the log-likelihood of GMM with the
regularizer as follows:

L =L − λR

=
∑
i

logP (xi; Θ)− λ
∑
i,j

DijWij

≥
∑
i

∑
z

Qi(z) log
P (xi, z; Θ)

Qi(z)

− λ

2

∑
i,j

(
D
(
Qi(z)∥Qj(z)

)
+D

(
Qj(z)∥Qi(z)

))
Wij

(2)

where λ is the regularization parameter.

2.2. Model Fitting with EM

To find maximum likelihood estimation for this re-
modelling equation of LCGMM, we also need to make
use of the EM algorithm. In our case, the latent vari-
ables are the Gaussian components to which the data
points belong. Firstly, we need to estimate values
to perform the E-step, computing the expectation of
zk|xi; Θ

(t). Then we use these variables to obtain the
parameters Θ(t+1) which maximize the log likelihood
(M-step). These two steps are repeated until a certain
stopping criterion is reached.

E-step:
It can be easily verified that the equality in Eq. (2)

holds still when Q
(t)
i (z) = P (z|xi; Θ

(t)). Conse-
quently, the E-step for LCGMM is exactly the same as
that in original GMM. The posterior probabilities for
the latent variables can be computed by simply apply-
ing Bayes’ formula [1]:

P (zk|xi; Θ
(t)) =E

(
zk|xi; Θ

(t)
)

=
π
(t)
k p(xi; θ

(t)
k )

P (xi; Θ(t))

=
π
(t)
k N (xi;µ

(t)
k ,Σ

(t)
k )∑K

j=1 π
(t)
j N (xi;µ

(t)
j ,Σ

(t)
j )

(3)

M-step:
With simple derivations [1], one can obtain the ex-

pected complete data log-likelihood for LCGMM:

Q(Θ(t+1)) = Q1(Θ
(t+1))−Q2(Θ

(t+1))

=
N∑
i=1

K∑
k=1

Q
(t)
i (z)

(
log π

(t+1)
k + log p(xi; θ

(t+1)
k )

)
− λ

2

N∑
i,j=1

(
D
(
Q

(t+1)
i (z)∥Q(t+1)

j (z)
)

+D
(
Q

(t+1)
j (z)∥Q(t+1)

i (z)
))

Wij

(4)

Notice that Q(Θ) has two parts. The first part Q1(Θ)
is exactly the expected complete data log-likelihood for
GMM in Eq. (1). And Q2(Θ) is the locally consistent
regularizer, which is the part we need to expand.

With the posterior probabilities for the latent vari-
ables in Eq. (3) estimated in E-step, we have:

D
(
Q

(t+1)
i (z)∥Q(t+1)

j (z)
)

=
K∑

k=1

Q
(t+1)
i (zk) log

Q
(t+1)
i (zk)

Q
(t+1)
j (zk)

≈
K∑

k=1

Q
(t)
i (zk) log

p(xi; θ
(t+1)
k )

p(xj ; θ
(t+1)
k )

+O(xi||xj ; Θ
(t+1))

(5)

Since
∑

k Q
(t)
i (zk) = 1, we get:

O(xi||xj ; Θ
(t+1)) = log

P (xi; Θ
(t+1))

P (xi; Θ(t+1))

It is easy to see that:

O(xi||xj ; Θ
(t+1)) +O(xj ||xi; Θ

(t+1)) = 0

meaning that only the former term of the last line in Eq.
(5) will be involved in the optimization process.

Remember that the edge weight matrix W is symmet-
ric, consequently, we are able to rewrite the complete
data log-likelihood Eq. (4) as follows:

Q(Θ(t+1)) =
N∑
i=1

K∑
k=1

P (zk|xi; Θ
(t))
(
log π

(t+1)
k

+ T
(t)
i,k logN (xi;µ

(t+1)
k ,Σ

(t+1)
k )

) (6)

where

T
(t)
i,k = 1− λ

N∑
j=1

(1− P (zk|xj ; Θ
(t))

P (zk|xi; Θ(t))
)Wij

3



We now know that the second part Q2(Θ) is the lo-
cally consistent regularizer which only involves the pa-
rameters {µ(t+1)

k ,Σ
(t+1)
k }Kk=1. Thus, the M-step re-

estimation equation for π(t+1)
k will be exactly the same

as that in GMM. It is [1]:

π
(t+1)
k =

∑N
i=1 P (zk|xi; Θ

(t))

N
(7)

Next let us derive the re-estimation equations for
{µ(t+1)

k ,Σ
(t+1)
k }Kk=1.

The relevant part of Eq. (6) is:

N∑
i=1

K∑
k=1

P (zk|xi; Θ
(t))
(1
2
log |(Σ(t+1)

k )−1|

− 1

2
(xi − µ

(t+1)
k )T (Σ

(t+1)
k )−1(xi − µ

(t+1)
k )

)
T

(t)
i,k

(8)

By taking the derivative of Eq. (8) with respect to
µk

(t+1) and setting it to zero, we get:

N∑
i=1

P (zk|xi; Θ
(t))
(
(Σ

(t+1)
k )−1(xi−µ

(t+1)
k )

)
T

(t)
i,k = 0

By solving the equation above, one obtains the M–step
re-estimation equation for µ(t+1)

k :

µ
(t+1)
k =

∑N
i=1 P (zk|xi; Θ

(t))T
(t)
i,kxi

N
(t)
k

(9)

where

N
(t)
k =

N∑
i=1

P (zk|xi; Θ
(t))

Let S(t+1)
i,k = (xi − µ

(t+1)
k )(xi − µ

(t+1)
k )T , we have:

(xi − µ
(t+1)
k )T (Σ

(t+1)
k )−1(xi − µ

(t+1)
k )

= Tr
(
S
(t+1)
i,k (Σ

(t+1)
k )−1

)
= Tr

(
(Σ

(t+1)
k )−1S

(t+1)
i,k

)
where Tr(·) denotes the trace of a matrix. We can
rewrite the Eq. (8) as:

1

2

N∑
i=1

K∑
k=1

P (zk|xi; Θ
(t))

(
log(|(Σ(t+1)

k )−1|)

− Tr
(
(Σ

(t+1)
k )−1S

(t+1)
i,k

))
T

(t)
i,k

(10)

By taking the derivative of Eq. (10) with respect to
(Σ

(t+1)
k )−1 and setting it to zero2, we get:

1

2

N∑
i=1

P (zk|xi; Θ
(t))
(
Σ

(t+1)
k − S

(t+1)
i,k

)
T

(t)
i,k = 0

Solving the above equation, we obtain the M-step re-
estimation equation for Σ(t+1)

k :

Σ
(t+1)
k =

∑N
i=1 P (zk|xi; Θ

(t))T
(t)
i,kS

(t+1)
i,k

N
(t)
k

(11)

When the regularization parameter λ = 0, we can
easily see the above M-step re-estimation equations (Eq.
9 and 11) boil down to the M-step in original GMM.
The E-step (Eq. 3) and M-step (Eq. 7, 9 and 11) are
alternated until a termination condition is met.

2.3. Flow of LCGMM

The steps can be summarized as follows:

t← 0

Θ(0) ← initial guess values3

Q(t) ← estimation by Eq. (3)

Θ(t+1) ← estimation by Eq. (7), (9) and (11)
if (termination condition not satisfied4)

t← t+ 1 and go to line. 3
else

Quit the loop.

Once the algorithm exits the loop, we are able to assign
the ith observation to corresponding cluster on the basis
of the value of Qi(z).
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