

Mining Quality Phrases from Massive Text Corpora

Jialu Liu*, Jingbo Shang*, Chi Wang, Xiang Ren, Jiawei Han

University of Illinois at Urbana-Champaign SIGMOD 2015, May 2015

* Equal Contribution

Outline

■ Motivation: Why Phrase Mining?

- SegPhrase+: Methodology
- Performance Study and Experimental Results
- Discussion and Future Work

Why Phrase Mining?

- Unigrams vs. phrases
 - Unigrams (single words) are ambiguous
 - Example: "United": United States? United Airline? United Parcel Service?
 - Phrase: A natural, meaningful, unambiguous semantic unit
 - Example: "United States" vs. "United Airline"
- Mining semantically meaningful phrases
 - Transform text data from word granularity to phrase granularity
 - Enhance the power and efficiency at manipulating unstructured data using database technology

Mining Phrases: Why Not Use NLP Methods?

- Phrase mining was originated from the NLP community
 - Name Entity Recognition (NER) can only identify noun phrases
 - Chunking can provide some phrase candidates
- Most NLP methods need heavy training and complex labeling
 - Costly and may not be transferable
 - May not fit domain-specific, dynamic, emerging applications
 - Scientific domains
 - Query logs
 - □ Social media, e.g., Yelp, Twitter

Mining Phrases: Why Not Use Raw Frequency Based Methods?

- Traditional data-driven approaches
 - Frequent pattern mining
 - ☐ If AB is frequent, likely AB could be a phrase
- Raw frequency could NOT reflect the quality of phrases
 - \square E.g., freq(vector machine) \ge freq(support vector machine)
 - Need to rectify the frequency based on segmentation results
- Phrasal segmentation will tell
 - Some words should be treated as a whole phrase whereas others are still unigrams

Outline

- Motivation: Why Phrase Mining?
- SegPhrase+: Methodology

- Performance Study and Experimental Results
- Discussion and Future Work

SegPhrase: From Raw Corpus to Quality Phrases and Segmented Corpus

Raw Corpus

Quality Phrases

Segmented Corpus

Document 1

Citation recommendation is an interesting but challenging research problem in data mining area.

Document 2

In this study, we investigate the problem in the context of heterogeneous information networks using data mining technique.

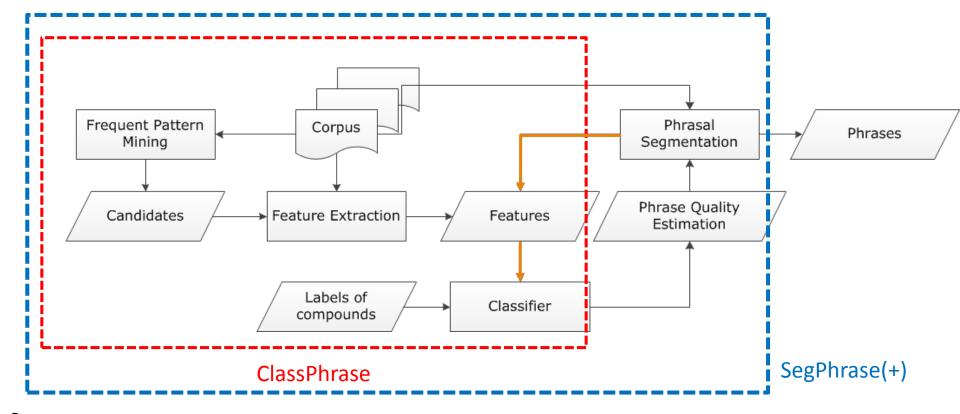
Document 3

Principal Component Analysis is a linear dimensionality reduction technique commonly used in machine learning applications.

Input Raw Corpus

Quality Phrases

Segmented Corpus


Phrase Mining

Phrasal Segmentation

SegPhrase: The Overall Framework

- ClassPhrase: Frequent pattern mining, feature extraction, classification
- SegPhrase: Phrasal segmentation and phrase quality estimation
- SegPhrase+: One more round to enhance mined phrase quality

What Kind of Phrases Are of "High Quality"?

- Judging the quality of phrases
 - Popularity
 - "information retrieval" vs. "cross-language information retrieval"
 - Concordance
 - "powerful tea" vs. "strong tea"
 - "active learning" vs. "learning classification"
 - Informativeness
 - "this paper" (frequent but not discriminative, not informative)
 - Completeness
 - "vector machine" vs. "support vector machine"

ClassPhrase I: Pattern Mining for Candidate Set

- Build a candidate phrases set by frequent pattern mining
 - Mining frequent k-grams
 - \square k is typically small, e.g. 6 in our experiments
- Popularity measured by raw frequent words and phrases mined from the corpus

ClassPhrase II: Feature Extraction: Concordance

□ Partition a phrase into two parts to check whether the cooccurrence is significantly higher than pure random

support vector machine this paper demonstrates
$$u_l \qquad u_r \qquad u_l \qquad u_r \\ \langle u_l, u_r \rangle = \arg\min_{u_l \oplus u_r = v} \log \frac{p(v)}{p(u_l)p(u_r)}$$

Pointwise mutual information:

$$PMI(u_l, u_r) = \log \frac{p(v)}{p(u_l)p(u_r)}$$

Pointwise KL divergence:

$$PKL(v||\langle u_l, u_r \rangle) = p(v) \log \frac{p(v)}{p(u_l)p(u_r)}$$

□ The additional p(v) is multiplied with pointwise mutual information, leading to less bias towards rare-occurred phrases

ClassPhrase II: Feature Extraction: Informativeness

- Deriving Informativeness
 - Quality phrases typically start and end with a non-stopword
 - "machine learning is" v.s. "machine learning"
 - Use average IDF over words in the phrase to measure the semantics
 - Usually, the probabilities of a quality phrase in quotes, brackets, or connected by dash should be higher (punctuations information)
 - "state-of-the-art"
- We can also incorporate features using some NLP techniques, such as POS tagging, chunking, and semantic parsing

ClassPhrase III: Classifier

- Limited Training
 - Labels: Whether a phrase is a quality one or not
 - "support vector machine": 1
 - "the experiment shows": 0
 - □ For ~1GB corpus, only 300 labels
- Random Forest as our classifier
 - Predicted phrase quality scores lie in [0, 1]
 - Bootstrap many different datasets from limited labels

SegPhrase: Why Do We Need Phrasal Segmentation in Corpus?

- Phrasal segmentation can tell which phrase is more appropriate
 - Ex: A standard [feature vector] [machine learning] setup is used to describe...

Not counted towards the rectified frequency

- Rectified phrase frequency (expected influence)
 - Example:

sequence	frequency	phrase?	rectified
support vector machine	100	yes	80
support vector	160	yes	50
vector machine	150	no	6
$\operatorname{support}$	500	N/A	150
vector	1000	N/A	200
machine	1000	N/A	150

SegPhrase: Segmentation of Phrases

- Partition a sequence of words by maximizing the likelihood
 - Considering
 - Phrase quality score
 - ClassPhrase assigns a quality score for each phrase
 - Probability in corpus
 - Length penalty
 - \square length penalty α : when $\alpha > 1$, it favors shorter phrases
- ☐ Filter out phrases with low rectified frequency
 - Bad phrases are expected to rarely occur in the segmentation results

SegPhrase+: Enhancing Phrasal Segmentation

- SegPhrase+: One more round for enhanced phrasal segmentation
- Feedback
 - Using rectified frequency, re-compute those features previously computing based on raw frequency
- Process
 - □ Classification → Phrasal segmentation // SegPhrase
 - → Classification → Phrasal segmentation // SegPhrase+
- **Effects** on computing quality scores
 - np hard in the strong sense
 - np hard in the strong
 - data base management system

Outline

- Motivation: Why Phrase Mining?
- SegPhrase+: Methodology
- Performance Study and Experimental Results

Discussion and Future Work

Performance Study: Methods to Be Compared

- Other phase mining methods: Methods to be compared
 - NLP chunking based methods
 - Chunks as candidates
 - □ Sorted by **TF-IDF** and **C-value** (K. Frantzi et al., 2000)
 - Unsupervised raw frequency based methods
 - □ ConExtr (A. Parameswaran et al., VLDB 2010)
 - □ **ToPMine** (A. El-Kishky et al., VLDB 2015)
 - Supervised method
 - KEA, designed for single document keyphrases (O. Medelyan & I. H. Witten, 2006)

Performance Study: Experimental Setting

Datasets

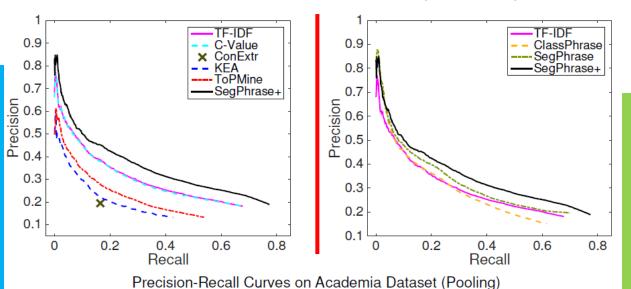
Dataset	#docs	#words	#labels
DBLP	2.77M	91.6M	300
Yelp	4.75M	145.1M	300

- Popular Wiki Phrases
 - Based on internal links
 - ~7K high quality phrases
- Pooling
 - Sampled 500 * 7 Wiki-uncovered phrases
 - Evaluated by 3 reviewers independently

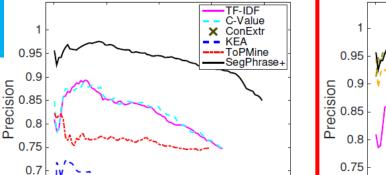
Performance: Precision Recall Curves on DBLP

Precision-Recall Curves on Academia Dataset (Wiki Phrases)

Compare
with other
baselines
TF-IDF
C-Value
ConExtr
KEA
ToPMine
SegPhrase+

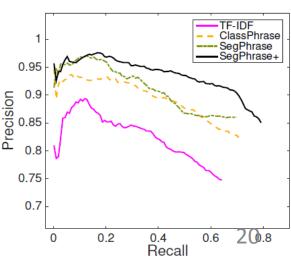

0.65

0


0.2

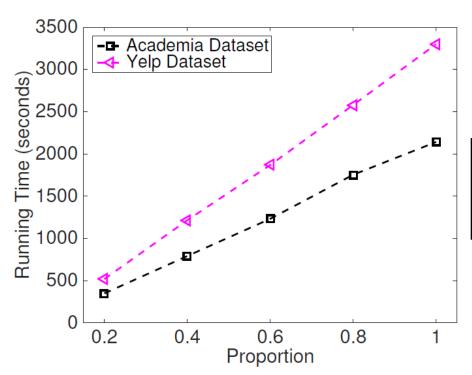
0.4

Recall



Compare with our 3 variations
TF-IDF
ClassPhrase
SegPhrase
SegPhrase+

0.6


8.0

Performance Study: Processing Efficiency

■ SegPhrase+ is linear to the size of corpus!

dataset	file size	#words	time
Academia	613MB	91.6M	0.595h
Yelp	750MB	145.1M	0.917h
Wikipedia	20.23GB	3.26G	28.08h

Experimental Results: Interesting Phrases Generated (From the Titles and Abstracts of SIGMOD)

Query	SIGMOD			GMOD	,
Method	SegPhrase+ C			Chunking (TF-IDF & C-Value)	
1	data base d		data base		
2	database syst	em		database system	
3	relational data	abase		query processing	
4	query optimiz	ration		query optimization	
5	query process	sing		relational database	

51	sql server			database technology	
52	relational data		database server		
53	data structure		large volume		
54	join query		performance study		
55	web service	Only in SegPhrase+		web service	Only in Chunking
	***	, 3			
201	high dimensional data		efficient implementation		
202	location based service		sensor network		
203	xml schema		large collection		
204	two phase locking		important issue		
205	deep web		frequent itemset		
	•••				

Experimental Results: Interesting Phrases Generated (From the Titles and Abstracts of SIGKDD)

Query	SIGKDD		
Method	SegPhrase+	Chunking (TF-IDF & C-Value)	
1	data mining	data mining	
2	data set	association rule	
3	association rule	knowledge discovery	
4	knowledge discovery	frequent itemset	
5	time series	decision tree	
51	association rule mining	search space	
52	rule set	domain knowledge	
53	concept drift	importnant problem	
54	knowledge acquisition	concurrency control	
55	gene expression data	conceptual graph	
	Only in SegPhrase+	Only in Chunking	
201	web content	optimal solution	
202	frequent subgraph	semantic relationship	
203	intrusion detection	effective way	
204	categorical attribute	space complexity	
205	user preference	small set	
		23	

Experimental Results: Similarity Search

- ☐ Find high-quality similar phrases based on user's phrase query
 - □ In response to a user's phrase query, SegPhrase+ generates high quality, semantically similar phrases
 - In DBLP, query on "data mining" and "OLAP"
 - □ In Yelp, query on "blu-ray", "noodle", and "valet parking"

Query	data m	ining	olap		
Method	SegPhrase+	Chunking	SegPhrase+	Chunking	
1	knowledge discovery	driven methodologies	data warehouse	warehouses	
2	text mining	text mining	online analytical processing	clustcube	
3	web mining	financial investment	data cube	rolap	
4	machine learning	knowledge discovery	olap queries	online analytical processing	
5	data mining techniques	building knowledge	multidimensional databases	analytical processing	

Query	blu-ray		noodle		valet parking	
Method	SegPhrase+	Chunking	SegPhrase+	Chunking	SegPhrase+	Chunking
1	dvd	new microwave	ramen	noodle soup	valet	huge lot
2	vhs	lifetime warranty	noodle soup	asian noodle	self-parking	private lot
3	cd	recliner	rice noodle	beef noodle	valet service	self-parking
4	new release	battery	egg noodle	stir fry	free valet parking	valet
5	sony	new battery	pasta	fish ball	covered parking	front lot

Outline

- Motivation: Why Phrase Mining?
- SegPhrase+: Methodology
- Performance Study and Experimental Results
- Discussion and Future Work

Recent Progress after SIGMOD Final Version

- Distant Training: No need of human labeling
 - Training using general knowledge bases
 - ☐ E.g., Freebase, Wikipedia
- Quality Estimation for Unigrams
 - □ Integration of phrases and unigrams in one uniform framework
- Multi-languages: Beyond English corpus
 - Extensible to mining quality phrases in multiple languages
 - Recent progress: SegPhrase+ works on Chinese and Arabic

Experimental Results: High Quality Phrases Generated (From Chinese Wikipedia)

Rank	Phrase	In English
•••		
62	首席_执行官	CEO
63	中间_偏右	Middle-right
84	百度_百科	Baidu Pedia
85	热带_气旋	Tropical cyclone
86	中国科学院_院士	Fellow of Chinese Academy of Sciences
•••		
1001	十大_中文_金曲	Top-10 Chinese Songs
1002	全球_资讯网	Global News Website
1003	天一阁_藏_明代_科举_录_选刊	A Chinese book name
•••		
9934	国家_戏剧_院	National Theater
9935	谢谢_你	Thank you
•••		

Conclusions and Future Work

- SegPhrase+: A new phrase mining framework
 - Integrating phrase mining with phrasal segmentation
 - Requires only limited training or distant training
 - Generates high-quality phrases, close to human judgement
 - Linearly scalable on time and space
- ☐ Looking forward: High-quality, scalable phrase mining
 - Facilitate entity recognition and typing in large corpora
 - Transform massive unstructured data into semi-structured knowledge networks

References

- □ A. El-Kishky, Y. Song, C. Wang, C. R. Voss, and J. Han. Scalable topical phrase mining from text corpora. *VLDB*, 8(3), Aug. 2015
- A. Parameswaran, H. Garcia-Molina, and A. Rajaraman. Towards the web of concepts: Extracting concepts from large datasets. VLDB, 3(1-2), Sept. 2010
- Medelyan, O., & Witten, I. H. (2006) Thesaurus based automatic keyphrase indexing. In Proc. of the 6th ACM/IEEE-CS Joint Conf. on Digital Libraries (pp. 296-297)
- □ Frantzi, K., Ananiadou, S., & Mima, H. (2000) Automatic recognition of multi-word terms: the c-value/nc-value method. Int. Journal on Digital Libraries, 3(2), 115-130