Ranking-Based Name Matching for Author Disambiguation in Bibliographic Data

Jialu Liu, Kin Hou Lei, Jeffery Yufei Liu, Chi Wang, Jiawei Han

Presenter: Chi Wang
Team name: SmallData
Achievement: 2nd @ 2nd Track
Performance: 99.157 (F1 score)
From: CS & STAT @ UIUC
Outline

• Overview

• Details of RankMatch

• Experiment

• Discussion
Challenge

• No training data
• Noises in the data set
 – Spelling, Parser, etc.
• Names from different areas
 – Asian, Western
• Test ground truth not trustable
Overview of the System (RankMatch)

1. **Pre-processing: data cleaning**
 - Input: raw data

2. **Calculate meta path-based similarity**
 - r-step
 - Enlarge candidate pool of duplicates based on author name similarity
 - p-step
 - Rank and trim candidates based on meta path-based similarity

3. **Post-processing (removing unconfident dupls.)**
 - Recalculate meta path-based similarity

4. **Output: final submission result**
Outline

• Overview
• Details of RankMatch
• Experiment
• Discussion
Pre-process: Data Cleaning

- **Noisy First or Last Names**
 - Eytan H. Modiano and Eytan Modianoy
 - Nosrat O. Mahmoodo and Nosrat O. Mahmoodi and

- **Mistakenly Separated or Merged Name Units**
 - Sazaly Abu Bakar and Sazaly AbuBakar
 - Vahid Tabataba Vakili and Vahid Tabatabavakili

- **Way to Recover**
 - Build statistics of name units
 - Count[“Modianoy”] << Count[“Modiano”]
 - Count[“Tabataba” & “Vakili”] > Count[“Tabatabavakili”]
The r-Step: Improving Recall

• Improving the recall of the algorithm means that given an author ID (input), one should find as many potential duplicates (output) as possible.

• What do we need to consider?

Name!
• **String-based Consideration**
 – **Levenshtein Edit Distance**
 • Levenshtein edit distance between two strings is the minimum number of single character edits required to change one string into the other.
 • Spelling or OCR error
 – **Soundex Distance**
 • Soundex algorithm is a phonetic algorithm that indexes words by their pronunciation in English.
 • “Michael”, “Mickel” and “Michal”
 – **Overlapping Name Units**
 • Name reordering brought by parser
 • *Wing Hong Onyx Wai* and *Onyx Wai Wing Hong*
• **Name-Specific Consideration**

 – **Name Suffixes and Prefixes**

 • Prefixes: “Mr”, ”Miss”
 • Suffixes: “Jr”, “I”, “II”, “Esq”

 – **Nicknames**

 • “Bill” and “William”
 • No transitive rule: “Chris” could be a nickname of “Christian” or “Christopher” but “Christian” will not be compatible with “Christopher”.

 – **Name Initials**

 • In research papers, people always use initials.
 • *Kevin Chen-Chuan Chang* and *K. C.-C. Chang, Kevin C. Chang*
 • Together with nicknames, “B” and “W” can be compatible because they can represent “Bill” and “William”
• Name-Specific Consideration (Cont.)
 – Asian Names and Western Names
 • Different areas have totally different name rules.
 • For example, East Asians usually lack the middle names and their first and last names could contain more than one name unit.
 – *Andrew Chi-Chih Yao* and *Michael I. Jordan*
 • So the thresholds for two name strings to be viewed as similar in terms are different for different areas.
 • For example, for edit distance
 – *Mike Leqwis* and *Mike Lewis*
 – *Wei Wan* and *Wei Wang*
 • Lots need to be done in this direction!
• Efficiency Consideration
 – To find potential duplicate author ID pairs, the ideal way is to process any pairs of author IDs in the dataset which is of time complexity $O(n^2)$.
 • Doable using MapReduce
 – We choose to reduce the search space via mapping author names into pools of name initials and units so that we only compare the pairs within the same pools.
 • *Michael Lewis* -> Pool[“Michael”], Pool[“Lewis”], Pool[“ML”]
 • Lossy!
 • Transitive rule: if name string a is similar to b and b is similar to c, then the name pair a and c needs to be checked to see whether they are similar or not.
The p-Step: Improving Precision

- Improving the precision of the algorithm means that once finding potential duplicates (input) from r-step, we need to infer the real author entity (output) shared by one or more author IDs.

- What do we need to consider?

 Network!
• Meta-path in networks
 – A meta-path P is a path defined on the graph of a network schema. For example, in this competition data set, the co-author relation can be described using the length-2 meta-path APA (author-paper-author)
• Adjacency Matrix for sub-networks
 – Adjacency matrix is a means of representing which nodes of a network are adjacent to which other nodes. Here is an example of adjacency matrices for Author-Paper and Paper-Venue separately.

\[
M_{A,P} = \begin{bmatrix}
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

\[
M_{P,V} = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]
• Measure Matrix for Nodes Similarity
 – A measure matrix is for keeping similarities for any pair of nodes based on a meta-path.
 – For example, the measure matrix for Author-Paper-Venue is:

\[M_{A,V} = \text{Normalize}(M_{A,P} \times M_{P,V}) \]

• \(L_2 \) Normalization is applied to make such that the self-maximum property can be achieved.

– Similarly, the measure matrix for APVPA is:

\[
M_{A,A} = M_{A,V} \times M_{A,V}^T = \begin{bmatrix}
 a_1 & a_2 & a_3 \\
 1.0000 & 0.6325 & 0 \\
 0.6325 & 1.0000 & 0.7071 \\
 0 & 0.7071 & 1.0000
\end{bmatrix}
\]
Multiple Measure Matrices
- We are interested in similarity score between authors
- Such score can be obtained via multiple measure matrices with different meta-paths.
- To support measure matrices defined on different meta-paths, we adopt the linear combination strategy:

\[Sim(a_i, a_j) = \sum W_{\text{path}} Sim_{\text{path}}(a_i, a_j) \]

- The selected meta-paths are APA, AOA, APAPA, APV PA, APKPA, APTPA and APY PA. The weights for them are decreasing progressively.
• Ranking-based Merging
 – Assume we have three authors and their similarity scores in the listed tables
 – To infer the real entity behind each ID
 • Sort the similarity scores
 • Start merging from top ranked ID
 – (2), (3) are in conflict, skip
 – (1), (2) merge -> (1, 2)
 – (1), (3) are in conflict because (2) and (3)
 – return (1, 2) and (3)
 • Once two IDs have multiple publications and low meta-path-based similarity score, reject their merging request.

<table>
<thead>
<tr>
<th>Name</th>
<th>Author ID</th>
<th>Matched IDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael Lewis</td>
<td>1</td>
<td>2, 3</td>
</tr>
<tr>
<td>Michael J. Lewis</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Michael P. Lewis</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author ID Pair</th>
<th>Similarity</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1, 2)</td>
<td>0.6325</td>
<td>2</td>
</tr>
<tr>
<td>(1, 3)</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>(2, 3)</td>
<td>0.7071</td>
<td>1</td>
</tr>
</tbody>
</table>
• Ranking-based Merging (cont.)
 – Expand author names corresponding to the IDs once we are confident about two IDs to be the duplicate.
 • For example, as authors 1 and 2 are highly possible to be the same person and the name of author 2 has better quality than that of author 1, we can replace the name of author 1 to be *Michael J. Lewis*.
 • Suppose the full name of author 1 or 2 to be *Michael James Lewis* and we have a new author with name *James Lewis*.
 • If we do not adopt this name expanding mechanism, obviously author 1 and this new author are in conflict.
Post-processing

• “Unconfident” duplicate author IDs should be removed even though their names are compatible and their meta-path-based similarity scores are acceptable.

• We define “unconfident” to have two factors
 – the difference between name strings in terms of unmatched name units to be large
 – the meta-path-based similarity score to be not large.
 – *Wing Hong Onyx Wai* and *W. Hong*
Iterative Framework

• The iterative framework takes the detected duplicates of the last iteration as part of the input.

• There are two reasons to do this:
 – It help generate better meta-path-based similarity scores by merging “confident” duplicate author IDs.
 – With the name expansion in p-step, the original input has changed and we need to rerun the algorithm.

• Time consuming
Outline

• Overview
• Details of RankMatch
• Experiment
• Discussion
Basic Information

- **Environment:** PC with Intel I7 2600 and 16GB memory
- **Language:** Python 2.7
- **Time Consumption:** One hour for one iteration
- **Code:** https://github.com/remenberl/KDDCup2013
<table>
<thead>
<tr>
<th>Author Name A</th>
<th>Author Name B</th>
<th>Expected Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jiawei Han</td>
<td>Jia Han</td>
<td>In Conflict</td>
</tr>
<tr>
<td>Xiang Li</td>
<td>Xiang Lin</td>
<td>In Conflict</td>
</tr>
<tr>
<td>Gordon D. Moskowitz</td>
<td>Gordon Blaine Moskowitz</td>
<td>In Conflict</td>
</tr>
<tr>
<td>H. Murray-Rust</td>
<td>D. M. Murray-Rustt</td>
<td>In Conflict</td>
</tr>
<tr>
<td>Deliang L. Wang</td>
<td>Liang Wang</td>
<td>In Conflict</td>
</tr>
<tr>
<td>Takeshi Mori</td>
<td>Taketoshi Mori</td>
<td>In Conflict</td>
</tr>
<tr>
<td>Tadashi Suzuki</td>
<td>Takashi Suzuki</td>
<td>In Conflict</td>
</tr>
<tr>
<td>Hong-Hu Zhu</td>
<td>H. H. Zhu</td>
<td>Compatible</td>
</tr>
<tr>
<td>Ralph Mac Nally</td>
<td>Ralph Mac Nally</td>
<td>Compatible</td>
</tr>
<tr>
<td>V. Scott Gordon</td>
<td>V. Scott Gordon</td>
<td>Compatible</td>
</tr>
<tr>
<td>Jeff W. Hughes</td>
<td>Jeffrey W. Hughes</td>
<td>Compatible</td>
</tr>
<tr>
<td>William Hughes</td>
<td>Bill Hughes</td>
<td>Compatible</td>
</tr>
<tr>
<td>William Hughes</td>
<td>B. Hughes</td>
<td>Compatible</td>
</tr>
<tr>
<td>Valli Kumari Vatsavayi</td>
<td>V. Valli Kumari</td>
<td>Compatible</td>
</tr>
<tr>
<td>Mercedes Fernandez-Redondo</td>
<td>Mercedes Fernandez Redondo</td>
<td>Compatible</td>
</tr>
<tr>
<td>Aliaa Abdel-Haleim Abdel-Razik Youssif</td>
<td>Aliaa A. A. Youssif</td>
<td>Compatible</td>
</tr>
</tbody>
</table>
Improvement of Performance

- Met bottleneck in the last few days.
Contributions of Modules

- Not accurate

<table>
<thead>
<tr>
<th>Performance</th>
<th>Gain</th>
<th>New Module(s)</th>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>95.376</td>
<td>-</td>
<td>Same Author Name Benchmark</td>
<td>-</td>
</tr>
<tr>
<td>95.786</td>
<td>0.410</td>
<td>+ Meta-path: Coauthor</td>
<td>19</td>
</tr>
<tr>
<td>96.623</td>
<td>0.837</td>
<td>+ Name Initials, Omitted Middle Name</td>
<td>21</td>
</tr>
<tr>
<td>97.427</td>
<td>0.804</td>
<td>+ Meta-path: Cовене</td>
<td>27</td>
</tr>
<tr>
<td>97.770</td>
<td>0.343</td>
<td>+ Nicknames + Asian names handling</td>
<td>33</td>
</tr>
<tr>
<td>98.729</td>
<td>0.959</td>
<td>+ Accepting name-compatible author pair even with zero meta-path-based similarity</td>
<td>36</td>
</tr>
<tr>
<td>99.020</td>
<td>0.291</td>
<td>+ Name reordering + noisy last/first name pre-processing</td>
<td>37</td>
</tr>
<tr>
<td>99.036</td>
<td>0.016</td>
<td>+ Rough post-processing</td>
<td>42</td>
</tr>
<tr>
<td>99.075</td>
<td>0.039</td>
<td>+ SoundEx distance</td>
<td>45</td>
</tr>
<tr>
<td>99.130</td>
<td>0.055</td>
<td>+ Name units breaking/merging pre-process, + name expansion</td>
<td>49</td>
</tr>
<tr>
<td>99.157</td>
<td>0.027</td>
<td>+ Iterative framework + more aggressive post-processing</td>
<td>54</td>
</tr>
</tbody>
</table>
Outline

• Overview
• Details of RankMatch
• Experiment
• Discussion
Data

• Lack of training data makes it difficult to evaluate the model, especially the p-step (meta-paths)
• Not able to find an effective way to make use of the training set which is released for Track I
• How are the evaluation set generated: labeled by algorithm or by domain experts?
Promising Directions

• Apply machine learning techniques to train a classifier using features like edit distance, similarity score from measure matrices (needs labels)
• Build models for names from different areas.
 – Indian, Japanese, Arabic and some western languages like French, German, Russian and so on
Conclusion

• String-based name matching to increase recall
• Network-based similarity score to increase precision
• A good chance to combine research insights and engineering implementation
Thanks. Q&A